ОБЩИЕ СВОЙСТВА НЕМЕТАЛЛОВ

К неметаллам относятся p-элементы главных подгрупп IV-VIII групп периодической системы Д.И. Менделеева, а также H, He — s-элементы и B — p-элемент IIIA-группы. Число электронов на внешнем уровне меняется от 4 до 8, т.е. от ns^2np^2 (IVA-группа) до ns^2np^6 (VIIIA-группа), а также для атома водорода $1s^1$, для атома гелия $1s^2$, для атома бора $2s^22p^1$.

Атомы неметаллов характеризуются высокой электроотрицательностью, проявляют окислительные свойства, принимая электроны до устойчивого завершенного состояния ns^2np^6 .

Характерные степени окисления: -4,-3,-2,-1, 0,+1,+2,+3,+4,+5,+6,+7.

 Φ изические свойства: газы (Cl₂, H₂, Ar, Kr и т.д.); жидкости (Br₂); твердые вещества (C, S, Si, I₂ и т.д.). Семь неметаллов имеют двухатомные молекулы. Это H₂, F₂, Cl₂, Br₂, I₂, N₂, O₂.

Химические свойства. Окислительные свойства проявляются при взаимодействии:

$$-$$
 с металлами $Me^0 - ne^- \rightarrow Me^{n+} (HeMe^0 + me^- \rightarrow HeMe^{m-}).$

При этом образуются соединения:

$$Me \xrightarrow{+C,Si}$$
 карбиды, силициды $\xrightarrow{+N,P}$ нитриды, фосфиды $\xrightarrow{+O}$ оксиды $\xrightarrow{+S,Se,Te}$ сульфиды, селениды, теллуриды $\xrightarrow{+Hal}$ галогениды

- с водородом $H_2 + Cl_2$ $\leftrightarrows 2HCl$
- с неметаллами с более низкой электроотрицательностью

$$2P + 5S = P_2^{+5} S_5^{-2} (\Theta(S) > \Theta(P))$$

со сложными веществами – неорганическими и органическими (реакции окисления). Окислителями, в основном, являются кислород и галогены.

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

 $4NH_3 + 5O_2 = 4NO + 6H_2O$
 $2FeCl_2 + Cl_2 = 2FeCl_3$

Восстановительные свойства проявляют все неметаллы, кроме фтора.

- при взаимодействии с кислородом (кроме F₂)

$$4P + 5O_2 \xrightarrow{t} 2P_2O_5$$

S + O₂ \xrightarrow{t} SO₂

 при взаимодействии со сложными веществами (кислотамиокислителями и солями-окислителями)

$$S^0 + 6HN^{+5}O_3$$
 конц. = $H_2S^{+6}O_4 + 6N^{+4}O_2 + 2H_2O$
 $6P^0 + 5KCl^{+5}O_3 = 5KCl^- + 3P_2^{+5}O_5$

Наиболее сильные восстановители C, Si, H₂.

$$ZnO + C \rightarrow Zn + CO$$

 $CuO + H_2 \rightarrow Cu + H_2O$

В реакциях диспропорционирования хлор является одновременно и окислителем и восстановителем.

$$Cl_2 + H_2O \rightarrow HCl + HClO$$

 $3Cl_2 + 6KOH \rightarrow 5KCl + KClO_3 + 3H_2O$

Кислородные соединения неметаллов. Оксиды неметаллов делят на несолеобразующие (SiO, NO, CO) и солеобразующие кислотные (SiO₂, N₂O₅, CO₂). По агрегатному состоянию среди оксидов неметаллов можно выделить газы (SO₂, CO₂, NO₂), жидкости (SO₃, N₂O₃) и твердые (P₂O₅, SiO₂). Все кислотные оксиды (кроме SiO₂) растворяются в воде с образованием кислот:

$$N_2O_3 + H_2O \rightarrow 2HNO_2$$

Сила кислородсодержащих кислот увеличивается с увеличением степени окисления кислотообразующего неметалла.

Водородные соединения неметаллов. Это летучие газообразные вещества, кроме воды. Метан CH_4 и силан SiH_4 плохо растворимы в воде; аммиак NH_3 и фосфин PH_3 при растворении образуют слабые основания NH_4OH и PH_4OH . Элементы VIA и VIIA-групп образуют кислоты состава H_2OH и HOH соответственно. С увеличением порядкового номера элемента-неметалла падает прочность связи между водородом и неметаллом и увеличивается сила кислот (легче отщепляется водород).

Водород

 $_1$ H — 1s 1 \uparrow — первый элемент в таблице Д.И. Менделеева. Степень окисления +1 (H $^+$) и –1 (Na $^+$ H $^-$ — гидрид натрия). Имеет три изотопа: протий $_1^1$ H; дейтерий $_1^2$ H(Д); тритий $_1^3$ H(Т).

Химические свойства.

Взаимодействие		
С простыми веществами	Со сложными веществами	
С неметаллами	Восстановительная способность	
$H_2+F_2=2HF$	Для получения W, Fe, Мо и др.	
$2H_2+O_2 \xrightarrow{t} 2H_2O$	$3H_2+WO_3=W+3H_2O$	
$H_2+S \xrightarrow{t} H_2S$	Для получения органических веществ	
$3H_2+N_2 \xrightarrow{t} 2NH_3$	CO+2H ₂ =CH ₃ OH	
С металлами	$CH_2=CH_2+H_2=CH_3-CH_3$	
$Ca+H_2=Ca^{+2}H_2^-$	О	
гидрид Са	$CH_3C-H + H_2 = CH_3CH_2OH$	

Пример. Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения

$$KOH \rightarrow H_2 \rightarrow KH \rightarrow H_2 \rightarrow HCl \rightarrow H_2 \rightarrow NH_3$$

$$\downarrow CH_3OH$$

Решение.

1. Водород можно получить, действуя на какой-либо амфотерный металл, например, на цинк раствором щелочи

$$Zn + 2KOH + 2H_2O \rightarrow K_2[Zn(OH)_4] + H_2\uparrow$$
 тетрагидроксоцинкат калия

2. При взаимодействии активных металлов (щелочных или щелочноземельных) с водородом образуются гидриды

$$2K + H_2 \rightarrow 2K^+H^-$$
 (гидрид калия)

3. Разложением гидридов металлов водой можно получить H_2

$$KH + H_2O \rightarrow KOH + H_2\uparrow$$

4. При взаимодействии водорода с галогенами образуются галогеноводороды

$$H_2 + Cl_2 \rightarrow 2HCl$$

5. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов кислот (кроме HNO_3)

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

6. При взаимодействии водорода с азотом при повышенном давлении, нагревании и присутствии катализаторов образуется аммиак

$$3H_2 + N_2 \leftrightarrows 2NH_3$$

7. При взаимодействии водорода с оксидом углерода (II) можно получить метиловый спирт ${\rm CH_3OH}$

$$2H_2 + CO \xrightarrow{P,\,t,\,\kappa ar.} CH_3OH$$

Галогены

Галогенами называются p-элементы VIIA-группы — фтор, хлор, бром, йод, астат. Общая электронная формула ns^2np^5 .

Физические свойства и основные степени окисления.

Галоген	Электронная	Степень окисления	Физические свойства
	формула		
¹⁹ ₉ F	$2s^22p^5$	-1	Светло-желтый газ
^{35,5} Cl	$3s^23p^5$	-1,+1,+3,+5,+7	Желто-зеленый газ
⁸⁰ ₃₅ Br	$4s^24p^5$	-1,+1,+3,+5,+7	Красно-бурая жидкость
¹²⁷ ₅₃ I	5s ² 5p ⁵	-1,+1,+3,+5,+7	Черно-фиолетовые кристаллы
²¹⁰ ₈₅ At	6s ² 6p ⁵	-1,+1,+5,+7	Газ

Получение. Фтор получают электролизом расплавов CaF₂, KHF₂.

Хлор в промышленности получают электролизом водного раствора NaCl.

В лаборатории:
$$4HCl + MnO_2 \rightarrow MnCl_2 + Cl_2\uparrow + 2H_2O$$

 $16HCl + 2KMnO_4 \rightarrow 2MnCl_2 + 5Cl_2\uparrow + 2KCl + 8H_2O$

Бром и йод получаются при пропускании хлора через водные растворы бромидов и иодидов металлов.

Химические свойства. Очень активные, вступают в реакции почти со всеми простыми веществами. Являются энергичными окислителями:

$$Hal + 1 \bar{a} \rightarrow Hal^-$$

Химическая активность ослабевает в ряду $F_2 \rightarrow Cl_2 \rightarrow Br_2 \rightarrow J_2$.

Взаимодействие		
С простыми веш	ествами	Со сложными веществами
С металлами	2Na + Cl2 = 2NaCl $2Al + 3J2 = 2AlJ3$	C водой $F_2 + H_2O = 2HF + O$
С неметаллами	$H_2 + Cl_2 = 2HCl$ $2P + 5Br_2 = 2PBr_5$ $S + 3Cl_2 = SCl_6$ $Xe + 2F_2 = XeF_4$.	$O + F_2 = O^+ F_2^-$ _ фторид кислорода Другие менее активно $Cl_2 + H_2O \leftrightarrows HCl^- + HCl^+O$ Со щелочами $Cl_2 + 2KOH \xrightarrow{xonod} KCl + KClO + H_2O$ $3Cl_2 + 6KOH \xrightarrow{t} 5 KCl + KClO_3 + 3H_2O$ Окислительная способность падает в ряду $F_2 - Cl_2 - Br_2 - J_2$ $F_2 + 2KCl = Cl_2 + 2KF$ $Cl_2 + 2NaBr = Br_2 + 2 NaCl$ $Br_2 + 2KJ = J_2 + 2KBr$

Соединения галогенов.

Бескислородные (галогеноводороды)	Кислородсодержащие кислоты и их соли
Получение	HC1 ⁺ O – хлорноватистая кислота
$CaF_2 + H_2SO_4 = CaSO_4 + 2HF$	КС1О – гипохлорит калия
$H_2 + Cl_2 = 2HCl$	$HCl^{+3}O_2$ – хлористая кислота
$NaCl_{(TB.)} + H_2SO_4 = NaHSO_4 + HCl$	$KClO_2$ – хлорит калия
$H_2 + Br_2 \xrightarrow{\kappa ar.} 2HBr$	$HCl^{+5}O_3$ – хлорноватая кислота
$H_2 + J_2 \xrightarrow{\text{KAT.}} 2HJ$	КСlO ₃ – хлорат калия (бертолетова соль)
	$HCl^{+7}O_4$ – хлорная кислота
Водные растворы - кислоты	КСlO ₄ – перхлорат калия
Сила кислот возрастает	$KClO_4 + H_2SO_4 = HClO_4 + KHSO_4$
HF – HCl – HBr – HJ	Сила кислот возрастает в ряду:
Химические свойства	HClO – HClO ₂ – HClO ₃ - HClO ₄
$4HF + SiO_2 = SiF_4 + 2H_2O$	(сильные кислоты)
$Mg + 2HCl = MgCl_2 + H_2^{\uparrow}$	Окислительная способность кислот падает в ряду
CuO + 2HCl = CuCl2 + H2O	HClO – HClO ₂ – HClO ₃ – HClO ₄
$Ca(OH)_2 + 2HCl = CaCl_2 + 2H_2O$	Tiero Tieroz Tieroz Tieroz
$P_B(NO_3)_2 + 2HCl = P_BCl_2 \downarrow + 2HNO_3$	$NaJ + 3HClO = NaJO_3 + 3HCl$
	$6\text{NaJ} + \text{KClO}_3 + 3\text{H}_2\text{SO}_4 = \text{J}_2^0 + \text{KCl} + 3\text{Na}_2\text{SO}_4 + 3\text{H}_2\text{O}$

Kачественные реакции на галогенид-ионы. $NaCl + AgNO_3 = NaNO_3 + AgCl \downarrow (белый)$

КВг + AgNO₃ = KNO₃ + AgBr
$$\downarrow$$
 (светло-желтый) NaJ + AgNO₃ = NaNO₃ + AgJ \downarrow (желтый) Пример. Как осуществить следующие превращения? хлороводород гипохлорит кальция $\stackrel{1}{\leftarrow}_{2}$ хлор $\stackrel{4}{\rightarrow}_{5}$ хлорид железа (III) хлор хлорид калия хлорид калия хлорид калия $\stackrel{2}{\leftarrow}_{3}$ хлорноватистая кислота Решение. 1. $H_2 + Cl_2$ ультра — фиолетовое облучение $\stackrel{5}{\rightarrow}_{5}$ хлорноватистая кислота $\stackrel{7}{\rightarrow}_{5}$ хлорид Са гипохлорит Са восстановитель $\stackrel{7}{\rightarrow}_{5}$ ССГ $\stackrel{1}{\rightarrow}_{5}$ СССГ $\stackrel{1}{\rightarrow}_{5}$ СССГ $\stackrel{1}{\rightarrow}_{5}$ СССГ $\stackrel{1}{\rightarrow}_{5}$ СССССТРО СССТРО ССТРО ССТРО

Подгруппа кислорода (халькогены)

Главную подгруппу VI-группы составляют халькогены — кислород, сера, селен, теллур, полоний, относящиеся к р-элементам. Общая электронная формула ns^2np^4 . Неметаллический характер и окислительная способность халькогенов уменьшается в ряду $O^0 \to S^0 \to Se^0 \to Te^0 \to Po^0$.

Водородные соединения халькогенов — H_2 Э. Водные растворы — кислоты. Кислородные соединения — кислотные оксиды Θ_2 и Θ_3 . Им соответствуют кислоты состава Θ_2 и Θ_3 и Θ_4 .

Физические свойства и степени окисления.

Название и	Электронная	Степень	Агрегатное состояние
символ	формула	окисления	
Кислород ¹⁶ ₈ O	$2s^22p^4$	-2, -1, +2	Бесцветный газ
Cepa 32/S	$3s^23p^4$	-2,+2,+4,+6	Твердое вещество, желтого цвета
Селен ⁷⁹ ₃₄ Se	$4s^24p^4$	-2,+2,+4,+6	Твердое вещество с металлическим блеском
Теллур ¹²⁸ ₅₂ Те	5s ² 5p ⁴	-2,+2,+4,+6	Твердое вещество с металлическим блеском
Полоний ²⁰⁹ Ро	$6s^26p^4$	+2,+4,+6	Твердое вещество с металлическим блеском

Кислород. Степень окисления (-2) (CaO^{-2}), (-1) в пероксидах ($H_2O_2^{-1}$) и (+2) во фториде ($O^{+2}F_2^{-1}$). Существуют две аллотропные модификации – кислород O_2 и озон O_3 . Проявляет высокую химическую активность (сильный окислитель).

Химические свойства.

Взаимодействие		
Спрос	тыми веществами	Со сложными веществами
С металлами	$2Ca + O_2 = 2CaO$	Горение сложных веществ
	$2Na + O_2 = Na_2O_2$	$2H_2S + 3O_2 = 2SO_2 + 2H_2O$
С неметаллами:	$2C + O_2 = 2CO$	$CH_4 + 2O_2 = CO_2 + 2H_2O$
	$C + O_2 = CO_2$	Окисление сложных веществ
Не взаимодейств	вует с Br ₂ , Cl ₂ , Au, Pt	$4NH_3 + 5O_2 \xrightarrow{t,Pt} 4NO + 6H_2O$
		Неполное окисление органических веществ:
		. 0 . 0
	-	// //
		$CH_3-C-H+O=CH_3-C-O-H$

Получение. В лаборатории – разложением солей или пероксидов:

$$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$
;

$$2KClO_3 \rightarrow 2KCl + O_2$$
;

$$2KNO_3 \rightarrow 2KNO_2 + O_2$$
;

$$2Na_2O_2 + 2H_2O \rightarrow 4NaOH + O_2$$
.

В промышленности – перегонка сжиженного воздуха.

 ${f Boдa}$ — оксид водорода ${
m H_2O}$. Прозрачная жидкость без цвета и запаха. Имеет угловое строение и полярную ковалентную связь. Молекулы воды между собой образуют водородную связь

Возникают ассоциаты $(H_2O)_n$, что обуславливает высокую плотность $\rho=1$ г/мл, температуру кипения $t_{\text{кип}}=100^0\text{C}$, растворяющую способность. *Химические свойства*.

Взаимодействие		
С простыми веществами	Со сложными веществами	
С металлами	С оксидами	
щелочными и щелочно-земельными	кислотными $P_2O_5 + 3H_2O = 2H_3PO_4$	
$2Na + 2H_2O = 2NaOH + H_2\uparrow$	основными $BaO + H_2O = Ba(OH)_2$	
$Ca + 2H_2O = Ca(OH)_2 + H_2 \uparrow$	С солями, кислотами, основаниями	
с менее активными при высокой t	$CuSO_4 + 5H_2O = CuSO_4 \cdot 5H_2O$	
$3Fe + 4H_2O \xrightarrow{t} Fe_3O_4 + 4H_2\uparrow$	$H_2SO_4 + H_2O = H_2SO_4 \cdot H_2O$	
31'e + 411 ₂ O	$NaOH + H_2O = NaOH \cdot H_2O$	

 $\rm \mathcal{A}_2O$ — тяжелая вода. $\rm H_2O_2$ — пероксид водорода (H—O—O—H). Проявляет окислительно-восстановительную двойственность. $\rm H_2O_2$ легко разлагается $\rm 2H_2O_2 \rightarrow O_2 + 2H_2O$

Используется как окислитель и дезинфицирующее средство.

Сера и ее соединения. Имеет несколько аллотропных модификаций: α-сера ромбическая (лимонно-желтая); β-сера моноклинная (темно-желтая).

Химические свойства.

		Взаимодействие
С простым	и веществами	Со сложными веществами
С металлами А	Ag + S = AgS	С водой не взаимодействует и не растворяется.
2	$2Na + S = Na_2S$	С кислотами $S + 2 H_2SO_4$, конц. = $3SO_2 + 2H_2O$
С неметаллами		$S + 4 HNO_3$, конц. = $SO_2 + 4NO_2 + 2H_2O$
как восстановит		Со щелочами 3S+NaOH \xrightarrow{t} 2Na ₂ S ⁻² +Na ₂ SO ₃ +3H ₂ O
	$S + Cl_2 = SCl_2$	2
	$S + F_2 = SF_6$	
как окислитель	$S + C = CS_2$	
	$S + H = H_2S$	

Получение. В промышленности – выплавка из горных пород.

В лаборатории
$$H_2SO_3 + 2H_2S \rightarrow 3S \downarrow + 3H_2O$$

 $2H_2S + O_2 \rightarrow 2S + 2H_2O$

Соединения серы.

Бескислородные соединения	Кислородосодержащие соединения
H ₂ S - сероводород (бесцветный газ с запа-	SO ₂ - сернистый газ с резким запахом, кис-
хом тухлых яиц). Сильный восстановитель	лотный оксид.
$5H_2S^{-2} + 2KMn^{+7}O_4 + 3H_2SO_4 =$	$SO_2 + H_2O = H_2SO_3$ (сернистая кислота)
$=5S^{0}+2MnSO_{4}+K_{2}SO_{4}+8H_{2}O$	Окислительно-восстановительные свойства
$H_2S^{-2} + 6HNO_3 = S^{+4}O_2 + 6NO_2 + 4H_2O$	$2H_2S + SO_2 = 3S + 2H_2O$
Водный раствор – сероводородная кислота	$5SO_2+2KMnO_4+2H_2O=$
(слабая).	$=2H_2SO_4+2MnSO_4+K_2SO_4$
$I. H_2S \leftrightarrows H^+ + HS^-$	Получение в лаборатории
II. $HS^- \leftrightarrows H^+ + S^{2-}$	$Cu + 2H_2SO_4 = CuSO_4 + SO_2 + 2H_2O$
$2NaOH + H_2S = Na_2S + H_2O$	в промышленности
$NaOH + H_2S = NaHS + H_2O$	$2\text{PbS} + 3\text{O}_2 \xrightarrow{ t } 2\text{PbO} + 2\text{SO}_2$
C солями $Pb(NO_3)_2 + H_2S = PbS \downarrow +2HNO_3$	SO_3 – оксид серы (VI) – бесцв. жидкость, кис-
черный	лотный оксид.
(качественная реакция)	$SO_3 + H_2O = H_2SO_4 - $ серная кислота, окисли-
Получение $FeS + 2HCl = FeCl_2 + H_2S$	тель; восстанавливается до SO ₂ .
	Получение $2SO_2 + O_2 = 2SO_3$

Серная кислота. H_2SO_4 – бесцветная вязкая жидкость (ρ =1,83г/мл).

Химические свойства.

1. Взаимодействие с металлами. Сильный окислитель. В разбавленной H_2SO_4 окислителем является ион H^+ . Металлы, стоящие в ряду напряжений до водорода, вытесняют его из разбавленной серной кислоты:

$$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2\uparrow$$

В концентрированной H_2SO_4 окислителем является S^{+6} . Пассивирует при обычной температуре Fe, Al, Ni, Cr, Ti. Продукт восстановления зависит от активности металла.

$$H_2S^{-2}\uparrow+...$$
 Me сред. актив. $(Zn$ -до $H)$
 $S^0\downarrow+...$
 S^0

II. $HSO_4^- \leftrightarrows H^+ + SO_4^{2-}$ Получение. H_2SO_4 получают в несколько стадий контактным способом

I.
$$4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2\uparrow$$
 – обжиг пирита

II.
$$2SO_2 + O_2 \xrightarrow{t,C, V_2O_5} 2SO_3$$

III.
$$nSO_3 + H_2SO_4 \rightarrow H_2SO_4 \cdot nSO_3$$
 (олеум)

6. Диссоциация. I. $H_2SO_4 \leftrightarrows H^+ + HSO_4^-$

Приливая к олеуму необходимое количество воды, получают кислоту $H_2SO_4 \cdot nSO_3 + nH_2O \rightarrow (n+1)H_2SO_4$

Подгруппа азота

Главную подгруппу V группы периодической системы составляют азот N, фосфор P, мышьяк As, сурьма Sв и висмут Bi. Общая электронная формула ns^2np^3 .

Элемент	Электронная	Степень окисления	Агрегатное состояние
	формула		
Азот ¹⁴ N	$2s^22p^3$	-3,-2,-1,+1,+2,	Бесцветный газ
71301 711		+3,+4,+5	
Фосфор 31 В	$3s^23p^3$	-3,+3,+5	Хрупкое твердое вещество
Мышьяк ⁷⁵ ₃₃ As	$4s^24p^3$	-3,+3,+5	Серебристо-серое вещество
1VIBILIDAR 331 k3			с металлическим блеском
Сурьма ¹²² ₅₁ Sb	$5s^25p^3$	-3,+3,+5	Серебристо-белый металл
Висмут ²⁰⁹ Ві	$6s^26p^3$	+3,+5	Серебристый металл
BHCMy1 83 B1			с красноватым оттенком

Азот и его соединения. В свободном состоянии азот — двухатомная молекула N_2 , очень прочная за счет тройной связи $(\sigma + 2\pi)$ $N \equiv N$. Азот обладает малой реакционной способностью, вступает в химическое взаимодействие при высоких температурах.

Химические свойства.

1. Взаимодействие с металлами
$$3Mg + N_2 \xrightarrow{t} Mg_3N_2$$

$$6Li + N_2 \xrightarrow{\kappa om\mu t} 2Li_3N$$

2. Взаимодействие с неметаллами
$$N_2 + O_2 \xrightarrow{t} 2NO$$
 $N_2 + 3H_2 \xrightarrow{t,kat} 2NH_3$

Получение. В промышленности N_2 получают перегонкой сжиженного воздуха.

В лаборатории: $NH_4NO_2 \xrightarrow{t} N_2 + 2H_2O$.

Oксиды азота и их свойства. Несолеобразующие – N_2O , NO, NO_2 ; солеобразующие кислотные – N_2O_3 , N_2O_5 .

$$N_2O_3 + H_2O \rightarrow 2HNO_2 -$$
 азотистая кислота $2NO_2 + H_2O \rightarrow HN^{+3}O_2 + HN^{+5}O_3 -$ азотная кислота $4NO_2 + O + 2H_2O \rightarrow 4HNO_3$; $N_2O_5 + 2H_2O \rightarrow 2HNO_3$ $N_7^{+3}O_3 \xrightarrow{+NO} N^{+4}O_2 \xleftarrow{+O_2} N_7^{+5}O_5$

Азотная кислота НNО₃ – сильная кислота, одноосновная, в водном растворе диссоциирует практически полностью

$$HNO_3 \leftrightarrows H^+ + NO_3^- (HNO_3 + H_2O \leftrightarrows H_3O^+ + NO_3^-)$$

Проявляет все характерные свойства кислот, реагируя с основными оксидами, основаниями, некоторыми солями.

$$2HNO_3 + CaO \rightarrow Ca(NO_3)_2 + H_2O$$

 $2HNO_3 + Cu(OH)_2 \rightarrow Cu(NO_3)_2 + 2H_2O$
 $6HNO_3 + Ca_3(PO_4)_2 \rightarrow 3Ca(NO_3)_2 + 2H_3PO_4$
Разлагается при нагревании $4HNO_3 \rightarrow 4NO_2 + O_2 + 2H_2O$

HNO₃ – сильный окислитель. Продуктами восстановления являются оксиды азота и ион аммония NH_4^+ . Это зависит от концентрации HNO_3 и активности металла.

$$HN^{+5}O_3$$
 (конц) $Me^{+n}(NO_3)_n + N_2^+O\uparrow(N_2^0) + H_2O$ $Me^{+n}(NO_3)_n + N^{+2}O\uparrow + H_2O$ $Me^{+n}(NO_3)_n + N^{+2}O\uparrow + H_2O$ $Me^{+n}(NO_3)_n + N^{+4}O_2\uparrow + H_2O$ $Me^{+n}(NO_3)_n + N^{+4}O_2\uparrow + H_2O$ $Me^{+n}(NO_3)_n + N^{-3}H_4NO_3 + H_2O$ $Me^{+n}(NO_3)_n + N^{-3}H_4NO_3 + H_2O$ $Me^{+n}(NO_3)_n + N_2^+O\uparrow(N_2^0) + H_2O$

Все соли азотной кислоты термически малоустойчивы. нитраты активных Ме

 $2KNO_3 \xrightarrow{t} 2KNO_2 + O_2$

нитраты Me средней активности
$$2Cu(NO_3)_2 \xrightarrow{t} 2CuO + 4NO_2 + O_2$$
 нитраты неактивных Me $2AgNO_3 \xrightarrow{t} 2Ag + 2NO_2 + O_2$

Фосфор и его соединения

Получение. В промышленности

$$2Ca_3(PO_4)_2 + 6SiO_2 + 10C \xrightarrow{t} 6CaSiO_3 + P_4 + 10CO$$

Соединения Р (III)	Соединения Р (V)
Взаимод	ействие с простыми веществами
$2P + 3Cl_2 = 2PCl_3$	$2P + 5Cl_2 = 2PCl_5$
$4P + 3O_2 = 2P_2O_3$	$4P + 5O_2 = 2P_2O_5$
$2P + 3S = P_2S_3$	
$2P + 3Mg = Mg_3P_2$ (фосфид Mg)	
Взаимоде	йствие со сложными веществами
C кислотами (HNO ₃) 3P + 5HN	$O_3 + H_2O = 3H_3PO_4 + 5NO$
Со щелочами $4P^0 + 3K$	$OH + 3H_2O \xrightarrow{t} P^{-3}H_3 \uparrow + 3KH_2P^{+1}O_2$
Кисло	родные соединения фосфора
Оксиды	Кислоты
$P_2O_3 (P_4O_6)$ – ядовит	$P_2O_3 + H_2O = H_3PO_3 - фосфористая кислота (восста-$
$P_2O_5(P_4O_{10})$ – белые кристалли	и, новитель).
сильный осушитель.	$P_2O_5 + H_2O = 2HPO_3 - метафосфорная кислота$
	$P_2O_5 + 3H_2O = 3H_3PO_4 - $ ортофосфорная кислота
	Образует два типа кислых солей.
	Получение в промышленности:
	$Ca_3(PO_4)_2 + 3H_2SO_4 = 3CaSO_4 + 2H_3PO_4$

Пример. Допишите уравнение окислительно-восстановительной реакции, методом электронного баланса расставьте коэффициенты, укажите окислитель, восстановитель.

$$Mg + HNO_{3pa36} \rightarrow \dots$$

Peшение. При взаимодействии разбавленной азотной кислоты с активными металлами продуктом восстановления N^{+5} в HNO_3 является ион аммония $(N^{-3}H_4)^+$. Следовательно, полное уравнение выглядит следующим образом

$$4Mg^0 + 10HN^{+5}O_{3pa36.} \rightarrow 4Mg^{+2}(NO_3)_2 + N^{-3}H_4NO_3 + 3H_2O$$
 Составим уравнения электронного баланса восстановитель $Mg^0 - 2\,\overline{e} \rightarrow Mg^{+2} \, \begin{vmatrix} 2 & 8 & 4 & \text{окисление} \\ 8 & 2 & 1 & \text{восстановление} \end{vmatrix}$

Пример. Напишите уравнения реакций, характеризующих ряд превращений

$$P \xrightarrow{1} Ca_3P_2 \xrightarrow{2} PH_3 \xrightarrow{3} P_2O_5 \xrightarrow{4} K_3PO_4 \xrightarrow{5} Ca_3(PO_4)_2 \xrightarrow{6} Ca(H_2PO_4)_2 \xrightarrow{7} Ca_3(PO_4)_2 \xrightarrow{8} P_2O_5$$
Решение. 1. $2P + 3Ca \rightarrow Ca_3P_2$

- 2. $Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3\uparrow$
- 3. $2PH_3 + 4O_2 \rightarrow P_2O_5 + 3H_2O$
- 4. $P_2O_5 + 6KOH \rightarrow 2K_3PO_4 + 3H_2O$
- 5. $2K_3PO_4 + 3CaCl_2 \rightarrow 6KCl + Ca_3(PO_4)_2\downarrow$
- 6. $Ca_3(PO_4)_2 + 4HCl$ (недостаток) $\rightarrow Ca(H_2PO_4)_2 + 2CaCl_2$ дигидрофосфат Ca
- 7. $Ca(H_2PO_4)_2 + 2Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 \downarrow + 4H_2O$
- 8. $Ca_3(PO_4)_2 \xrightarrow{t} 3CaO + P_2O_5$

Подгруппа углерода

В главную подгруппу IV группы входят углерод C, кремний Si, германий Ge, олово Sn, свинец Pb. Сокращенная электронная формула ns^2np^2 . В основном состоянии элементы двухвалентны, в возбужденном — четырехвалентны. C, Si — неметаллы, образуют оксиды типа ЭО и ЭО₂, водородные соединения ЭН₄. Высшие оксиды углерода и кремния обладают кислотными свойствами.

Углерод и его соединения

Углерод существует в нескольких аллотропных модификациях. Кроме алмаза (кристаллическая структура) и графита (слоистая стуруктура) известны α -карбин ($-C \equiv C - C \equiv C - C$), β -карбин (поликумулен) (=C = C = C - C = C - C), фуллерены ($C_{60.90}$).

При обычной температуре углерод малоактивен, при нагревании взаимодействует со многими простыми и сложными веществами, может проявлять окислительно-восстановительные свойства.

Химические свойства.

Восстановительные	Окислительные
$C + O_2 = CO_2 - $ углекислый газ	$4 Al + 3C = Al_4C_3 - $ карбид алюминия
$2C + O_2 = 2CO - $ угарный газ	$Ca + 2C = CaC_2 - $ карбид кальция
$C + 2S = CS_2 - $ сероуглерод	$CaO + 3C = CaC_2 + CO$
$2C + N_2 = (CN)_2$ – удициан	$C + H_2 = CH_4 - $ метан
$C + CuO = Cu + C \Theta$	
$2C + PbO_2 = Pb + 2CO$ в металлургии	
$C + CO_2 = 2CO$	
$C + H_2O(\text{пар}) = CO + H_2 - $ водяной газ	

Оксиды углерода (II) и (IY).

СО – бесцв. газ, без запаха, токсичен	СО2 – бесцв. газ, без запаха	
Получение		
$HCOOH \xrightarrow{t} CO\uparrow + H_2O$	В промышленности $C + O_2 = CO_2$	
	$CaCO_3 \xrightarrow{t} CaO + CO_2 \uparrow$	
	В лаборатории	
	$Na_2CO_3 + H_2SO_4 = Na_2SO_4 + H_2O + CO_2 \uparrow$	

Химические свойства	
Несолеобразующий оксид	Кислотный оксид
$2CO + O_2 = 2CO_2$	$CO_2 + H_2O = H_2CO_3 - $ угольная кислота
$CO + Cl_2 = COCl_2$	$CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O$
$CO + Fe_2O_3 = 3CO_2 + 2Fe$	$CO_2 + BaO = BaCO_3$
$Ni + 4CO = Ni(CO)_4 - тетракарбонил$	$CO_2 + KOH = KHCO_3$
никеля	C металлами $CO_2 + 2Mg = 2MgO + C$
$CO + NH_3 = HCN + H_2O$	
циановодородная	
кислота	

Угольная кислота H_2CO_3 — слабая, двухосновная кислота. Диссоциирует в 2 ступени, образует средние и кислые соли.

I.
$$H_2CO_3 \leftrightarrows H^+ + HCO_3^-$$

II. $HCO_3 \leftrightarrows H^+ + CO_3^{-2}$

Средние соли - карбонаты	Кислые соли - гидрокарбонаты
Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃ -	Na(HCO ₃) ₂ , Mg(HCO ₃) ₂ , Ca(HCO ₃) ₂ –
растворимые в воде	растворимые в воде
$CaCO_3$, $MgCO_3$, $BaCO_3$ – нерастворимые	$Ca(HCO_3)_2 \xrightarrow{t} CaCO_3 \downarrow + H_2O + CO_2 \uparrow$
$MgCO_3 \xrightarrow{t} MgO + CO_2 \uparrow$	$NaHCO_3 + HCl = NaCl + H_2O + CO_2 \uparrow$
$CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2 \uparrow$	$Ca(HCO_3)_2 + Ca(OH)_2 = 2CaCO_3 \downarrow +2H_2O$

Кремний и его соединения

Кремний – темно-серое вещество со стальным блеском, твердое (царапает стекло), проявляет полупроводниковые свойства.

Химические свойства.

Titistiti teekite edatteittät.	
Взаимодействие	
С простыми веществами	Со сложными веществами
C галогенами $Si + 2Cl_2 \xrightarrow{t} SiCl_4$	С плавиковой кислотой $Si + 4HF = SiF_4 + 2H_2 \uparrow$
C кислородом) $Si + O_2 \xrightarrow{t} SiO_2$	$Si + 12HF + 4HNO_3 = 3SiF_4 + 4NO + 8H_2O$
C азотом $3Si + 2N_2 \xrightarrow{t} Si_3N_4$	Хранить HF в стеклянной посуде нельзя! Со щелочами Si+2NaOH+H ₂ O = Na ₂ SiO ₃ +2H ₂ ↑
C углеродом $Si + C \xrightarrow{t} SiC$	C оксидами $Si + 2MgO = 2Mg + SiO_2$
карборунд	
C металлами $Si + 2Mg = Mg_2Si$	
разлагаются кислотами	
$Mg_2Si + H_2SO_4 = SiH_4(силан) + 2MgSO_4$	

Оксид кремния (IV) SiO_2 (кремнезем) — твердое тугоплавкое вещество, нерастворимо в воде, кислотный оксид, реагирует при нагревании или сплавлении, образуя силикаты.

$$SiO_2 + Na_2O \rightarrow Na_2SiO_3$$

 $SiO_2 + Ca(OH)_2 \rightarrow CaSiO_3 + H_2O$
 $SiO_2 + CaCO_3 \rightarrow CaSiO_3 + CO_2 \uparrow$

Полученные искусственным путем Na_2SiO_3 и K_2SiO_3 – растворимое стекло – сильно гидролизованы. Их концентрированный раствор (жидкое стекло) имеет сильно щелочную реакцию.

Из SiO_2 получают карборунд SiC: $SiO_2 + 3C \rightarrow SiC + 2CO$.

SiO₂ является основным компонентом стекла, которое получается по реакции:

$$Na_2CO_3 + CaCO_3 + 6SiO_2 \rightarrow Na_2O \cdot CaO \cdot 6SiO_2 + 2CO_2 \uparrow$$

Кремниевая кислота H_2SiO_3 – очень слабая кислота. В воде нерастворима, но легко образует коллоидные растворы. Получают ее из растворимых силикатов, действуя более сильной кислотой, даже угольной:

$$K_2SiO_3 + 2HCl \rightarrow H_2SiO_3 \downarrow + 2KCl$$

 $Na_2SiO_3 + H_2O + CO_2 \rightarrow H_2SiO_3 \downarrow + Na_2CO_3$

При обычных условиях медленно, а при нагревании быстрее разлагается на воду и SiO₂:

$$H_2SiO_3 \xrightarrow{t} H_2O + SiO_2$$

Пример. Представьте с помощью химических уравнений следующие превращения

SiO₂

$$\xrightarrow{1} Si \xrightarrow{2} Mg_2Si \xrightarrow{3} SiH_4$$
SiO₂

$$\xrightarrow{4} K_2SiO_3 \xrightarrow{5} H_2SiO_3$$
Paragraph 1 SiO₂ + 2C₂ Si + 2CO₃

Решение. 1. $SiO_2 + 2C = Si + 2C$

- 2. $Si + 2Mg \xrightarrow{t} Mg_2Si$
- 3. $Mg_2Si + 2H_2SO_4 = 2MgSO_4 + SiH_4\uparrow$
- 4. $2KOH + SiO_2 = K_2SiO_3 + H_2O$
- 5. $K_2SiO_3 + 2HCl = 2KCl + H_2SiO_3$